A Versatile New Synthesis of Quinolines and Related Fused Pyridines. Part 5.1 The Synthesis of 2-Chloroquinoline-3-carbaldehydes

By Otto Meth-Cohn,* Bramha Narine, and Brian Tarnowski, The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT

Abstract

Acetanilides are converted into 2-chloroquinoline-3-carbaldehydes in good yield by the action of Vilsmeier's reagent in phosphoryl chloride solution. The reaction is shown to involve successive conversion of the acetanilide into an imidoyl chloride and then an N - $(\alpha$-chlorovinyl) aniline. The latter enamine is diformylated at its β-position and subsequently cyclised to the chloroquinolinecarbaldehyde. The diformylated intermediates may be isolated in several cases and separately cyclised with polyphosphoric acid.

In 1896, Friedel noted the formation of a red dye on treatment of N-methylacetanilide with phosphoryl chloride to which he assigned the problematic structure (1). ${ }^{2}$ This was corrected by Fischer, Müller, and Vilsmeier in 1925^{3} who assigned the cyanine-dye structure (2) and argued cogently that this product derived from the self-condensation of the quinolinium salt (3). It was the realisation by Vilsmeier and Haack ${ }^{4}$ that one molecule of N-methylacetanilide had acetylated a

(1)

(2)

(3)
second molecule (mistakenly considered as an orthoacylation, a myth still believed ${ }^{5}$) prior to cyclisation that led to the discovery of the Vilsmeier-Haack formylation using N-methylformanilide. However, the synthesis of quinolines by this approach has lain dormant. It is the intention of this and subsequent papers to establish this powerful route to quinolines, to explore its scope and mechanism, and to demonstrate the value of the products as synthetic intermediates.

Vilsmeier-Haack formylation using dimethylformamide and phosphoryl chloride involves the Vilsmeier reagent (VR) (4). ${ }^{6}$ It is a mild electrophilic process and proceeds only with activated aromatic systems. The work particularly of Arnold's group has extended its application to the conversion of, for example, ketones
into β-chloroacrylaldehyde derivatives, and alkenes into $\alpha \beta$-unsaturated aldehydes. ${ }^{6}$ However, attempts to formylate acetanilides (5) and their analogues have not led to either ring or side-chain C-formylation ${ }^{7}$ but

(4)
rather attack at nitrogen giving the formamidine (6) (Scheme 1). ${ }^{8}$ That this result is an over-simplification of the facts is borne out both by the quinoline synthesis already referred to and the sequel.

The conversion of acetanilides into an imidoyl chloride (7) is well documented ${ }^{9}$ and is efficiently catalysed by dimethylformamide, when the reaction is almost instantaneous at ambient temperature.

Our first endeavour to facilitate either ring formylation or cyclisation of a side-chain formylated acetanilide lay in substituting the benzene ring with strongly electron-donating groups. Thus 3,4,5-trimethoxy-, 3,4-dimethoxy-, 3-methoxy-, and 3-methylthio-acetanilide were each treated with dimethylformamide (3 mol equiv.) in phosphoryl chloride (7 mol equiv.) under reflux. These readily cyclised giving $5,6,7$-trimethoxy-, 6,7-dimethoxy-, 6-methoxy-, and 6-methylthio-quinoline

(5)

(6)

Scheme 1
chloro-aldehydes (8) respectively in $92,72,89$, and 92% yield, respectively. However, less activated acetanilides gave only formamidines (6) under these conditions. The reaction is especially noteworthy in its regiospecificity, no trace of isomeric quinoline being formed from the unsymmetrical anilides (Scheme 2).

Since formamidine (6) formation involved cleavage of the acetyl moiety, we next conducted the formylation in a sealed tube hoping to reverse the deacetylation of the
acetanilide and hence facilitate quinoline formation. In the event, this method was successful in the formation of 2 -chloro-3-formylquinolines (8) (Scheme 2) but ultimately was unnecessary for efficient quinoline formation. First, however, the stoicheiometry of the reaction was

Scheme 2
studied and the use of phosphoryl chloride as the solvent of choice (rather than dimethylformamide or a chloroalkane as commonly used) was established. Table 1

Table 1
Reaction of acetanilide (1 mol equiv.), dimethylformamide (3 mol equiv.), and phosphoryl chloride in a sealed tube at $120^{\circ} \mathrm{C}$ for 4 h

2-Chloro-3-formylquinoline
POCl_{3} (mol equiv.)
3
4.5
7
10
(8) (\%)

26
53
78
76

Table 2
Reaction of acetanilides (1 mol equiv.), DMF (3 mol equiv.), and POCl_{3} (7 mol equiv.) in a sealed tube

$\begin{gathered} \mathrm{R}^{\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4}-} \end{gathered}$	T/	t/	2-Chloro-3formylquinoline (8)			Formamidine (6) *	
R	${ }^{\circ} \mathrm{C}$	h	R	(\%)		R	(\%)
H	120	4	H	78	(0)		100)
2-Me	100	2.5	$8-\mathrm{Me}$	63	(28)		
3-Me	80	2.25	7-Me	66	(64)		
4-Me	85	2.25	6-Me	74	(28)		
2 -OMe	85	4	$8-\mathrm{OMe}$	14			
$4-\mathrm{OMe}$	100	1.25	$6-\mathrm{OMe}$	10	(0)		
$2-\mathrm{Cl}$	100	1.25		0		2 Cl	95
3-Cl	100	1.25	7-Cl	35		$3-\mathrm{Cl}$	54
$4-\mathrm{Cl}$	100	2	$6-\mathrm{Cl}$	13		$4-\mathrm{Cl}$	50
$4-\mathrm{Br}$	100	2	$6-\mathrm{Br}$	30		$4-\mathrm{Br}$	50
$2-\mathrm{NO}_{2}$	100	1.25		0		$2-\mathrm{NO}_{2}$	64
$3-\mathrm{NO}_{2}$	100	1.25		0		$3-\mathrm{NO}_{2}$	66
$4-\mathrm{NO}_{2}$	100	1.25		0		$4-\mathrm{NO}_{2}$	72

* Yields in parentheses derive from reactions conducted in an open flask under reflux.
shows the effect of increasing quantities of the solvent on the yield of 2 -chloro- 3 -formylquinoline (8). A variety of acetanilides were then subjected to these conditions and some to the same reaction under reflux in an open vessel (Table 2). Some significant points emerge:
(a) activated acetanilides react faster and in better yield to give quinolines (8) than other strongly deactivated systems giving solely formamidines;

N.m.r. spectra of compound (9): a, b, and c depict ${ }^{1} \mathrm{H}$ n.m.r. spectra at probe temperature, $115^{\circ} \mathrm{C}$, and $-40^{\circ} \mathrm{C}$ respectively; d and e show the ${ }^{13} \mathrm{C}$ n.m.r. spectra at probe temperature and $-60^{\circ} \mathrm{C}$ respectively
(b) a $+M$ substituent in the meta-position is especially effective and, surprisingly, gives only one quinoline isomer.

Attempts to further reinforce the possible reversible re-acetylation of the formamidine by addition of acetyl chloride or acetic acid to the sealed-tube reaction mixture were abortive, giving in the case of 4 -chloroacetanilide, only 3% of the chloroquinolinealdehyde (8; $\mathrm{R}=6-\mathrm{Cl}$) and the formamidine ($5 ; \mathrm{R}=4-\mathrm{Cl}$) in $\mathbf{5 5} \%$ yield. A further product from this reaction was, however, of considerable significance in unravelling the mechanism of the quinoline formation.

This product, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$, showed a broad hydrogenbonded $\mathrm{OH} / \mathrm{NH}$ absorption and an amidic carbonyl peak ($1660 \mathrm{~cm}^{-1}$) in its infrared spectrum and temperature variable ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra (see Figure). Thus at elevated temperature the ${ }^{1} \mathrm{H}$ n.m.r. spectrum revealed the presence of a para-disubstituted aromatic ring, a dimethylamino-group, an aldehyde, an $\mathrm{NH} / \mathrm{OH}$ and another singlet CH group. At low temperature the $\mathrm{NH} / \mathrm{OH}$, aldehyde, and CH signals were each split into two signals in approximately a $2: 1$ ratio while at probe temperature these three signals were virtually absent due to coalescence. We account for these data either by the two tautomers (9a) and (9b) [in which (9a) is domin-

ant] which equilibrate sufficiently rapidly at ambient temperature to allow coalescence at the n.m.r. time scale, or by the geometrical isomerism of (9a) and (9c). The ${ }^{13} \mathrm{C}$ n.m.r. spectra show similar effects as well as nonequivalence in the NMe_{2} carbons due to the vinylogous amide double-bond character of the $\mathrm{C}-\mathrm{NMe}_{2}$ linkage. Mass-spectral data (see later) further supported the structure. The compound was isolated in 40% yield. Similar products (10) were isolated from the sealed-tube reactions (Table 2) in low yield including $\mathrm{R}=4-\mathrm{Me}$ $(3 \%), \mathrm{R}=3-\mathrm{NO}_{2}(6 \%)$, and $\mathrm{R}=4-\mathrm{NO}_{2}(16 \%)$. Later results made these intermediates available in good yields.

These $\quad N$-aryl-3-dimethylamino-2-formylacrylamides (10) (in effect, derivatives of malondialdehyde) are clearly derived from the iminium salts (11) on work-up. The
salts (11) in turn are diformylated derivatives of the imidoyl chlorides (7) derived from acetanilides and a reasonable rationalisation of the reaction may thus be formulated as in Scheme 3. This requires the tautomer-

(10)

(11)
ism of the imidoyl chloride (7) to the enamine (12), a known phenomenon, ${ }^{9 a, 10}$ probably by acid catalysis, and subsequent formylation of the enamine. The monoformylated derivative (13) is still an enamine by virtue of the NMe_{2} group and thus can undergo a second attack by VR.

With this hypothesis in mind, we next studied the role

Scheme 3
of acid catalysts on the quinoline formation. (It should be noted that HCl is formed at each formylation step, suggesting that if the imidoyl chloride-enamine tautomerism is indeed acid-catalysed, the reaction should be auto-catalytic, a fact already noted in some Vilsmeier reactions. ${ }^{6}$)

Following an early observation of Vilsmeier, ${ }^{4}$ we noted
a dramatic improvement in the yield of 2 -chloro6 -methoxyquinoline-3-carbaldehyde (8; $\mathrm{R}=6$ - OM) (from 10 to 67% yield) when the sealed-tube reaction of p-methoxyacetanilide was conducted in the presence of added phosphorus pentachloride (1 mol equiv.; at 100 ${ }^{\circ} \mathrm{C}$ for 4 h). However no change was noted for several other cases.
p-Chloroacetanilide ($5 ; \mathrm{R}=4-\mathrm{Cl}$) was the chosen
Table 3
The role of acid catalysts on the formylation of p-chloroacetanilide using DMF (3 mol equiv.) and POCl_{3} (7 mol equiv.) in a sealed tube

Catalyst (mol equiv.)	$\begin{aligned} & t / \\ & h \end{aligned}$	$\begin{aligned} & T / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Quinoline $\mathrm{R} \underset{(\%)}{(8 ;-\mathrm{Cl})}$	$\begin{aligned} & \text { Acrylamide } \\ & \begin{array}{c} (10 ; \\ =4-\mathrm{Cl}) \\ (\%) \end{array} \end{aligned}$
	2	100	13	<25
PPA (1)	1.2	100	4	42
AcOH (1)	1.2	100	3	40
AcOH (3)	1.2	100	1	7
$\mathrm{HCl}(1)$	1.2	75	2	60
$\mathrm{HCl}(1)$	3	75	2	62
$\mathrm{HCl}(1)$	1.2	100	6	56
$\mathrm{HCl}(3)$	1.2	100	9	52
HCl (1)	2.2	140	23	0*

* N-(4-Chlorophenyl)- $N^{\prime} N^{\prime}$-dimethylformamidine formed in 70\% yield.

Table 4
Action of DMF (3 mol equiv.) and $\mathrm{POCl}_{3}(7 \mathrm{~mol}$ equiv.) on p-chloroacetanilide in an open flask

t / h	$T 1^{\circ}$	Added HCl (mol equiv.)	Quinoline $\mathrm{R} \underset{(\%)}{(8 ;-\mathrm{Cl})}$	$\begin{aligned} & \text { Acrylamide } \\ & \begin{array}{l} \text { (10; } \\ =4-\mathrm{Cl}) \\ (\%) \end{array} \end{aligned}$
1	75	0)	73
1.5	75	0	2	69
48	20	0		0
3	75	1	4	66
3	60	1	0	0

substrate and the results are collected in Table 3. It is evident that side-chain formylation of acetanilides is efficiently catalysed by acids, particularly hydrochloric
acid, but that the cyclisation is not facilitated by the presence of acid. Furthermore, elevation of the temperature results in diminution of the diformylated product yield (with formation of formamidine) indicating that the formamidine formation is probably irreversible. N-Formylation of the diformylated product (11) and subsequent cleavage of the diformylated side-chain is the likely source of the formamidines.

Armed with this vital temperature-dependence data we next examined the formylation of acetanilides at moderate temperatures and at atmospheric pressure in an open flask. Thus p-chloroacetanilide, is efficiently diformylated giving its acrylamide derivative (10) merely by heating for 1 h at $75^{\circ} \mathrm{C}$, although cyclisation was still inefficient. These results suggest that the beneficial effects of a sealed tube were mainly to do with keeping in the HCl of reaction rather than reversing the formamidine formation. At milder temperatures, addition of HCl is unnecessary since it is retained in solution.

We next examined a range of acetanilides under these mild formylating conditions (Table 5) it being first established that $2-2.5 \mathrm{~mol}$ equiv. of DMF was adequate for efficient diformylation rather than 3 mol equiv. as used earlier. The chloroquinolinecarbaldehydes (8) were readily obtained by filtration on pouring the reaction mixture into ice-water. The other products only appeared on basification of the filtrate and were separated by trituration of the material with light petroleum, in which the formamidines were very soluble while the diformylated products were not.

These are undoubtedly the best general conditions for formation of the chloroquinolinecarbaldehydes. Yields of quinolines were particularly good with a $+M$ substituent in the meta-position and once more the reaction was remarkable for its specificity, only one isomer being formed. It would appear that a combination of the mildness of the electrophilic conditions (i.e. the Reac-tivity-Selectivity Principle ${ }^{11}$) and the large steric

Table 5
Reaction of acetanilides with DMF (2.5 mol equiv.) and POCl_{3} (7 mol equiv.) in an open flask

$\underset{R}{\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH} \mathrm{Ac}}$	$T /{ }^{\circ} \mathrm{C}$	t / h	Products*					
			Quinoline (8)		Acrylamide (10)		Formamidine (6)	
			R	(\%)	R	(\%)	R	(\%)
H	75	16.5	H	(68)		n.d.	H	11
2-Me	75	15.5	8-Me	(67)	2-Me	7	2-Me	13
3-Me	75	6	7-Me	(66)		n.d.		n.d.
4-Me	75	16	6-Me	(70)	4-Me	10	4-Me	6
2 -OMe	75	15.5	$8-\mathrm{OMe}$	(5)	2 -OMe	7	2-OMe	14
3-OMe	75	4	$7-\mathrm{OMe}$	(65)		n.d.		n.d.
$4-\mathrm{OMe}$	75	16	$6-\mathrm{OMe}$	(56)		n.d.	4-OMe	27
$2-\mathrm{Cl}$	75	2	$8-\mathrm{Cl}$	(0)	$2-\mathrm{Cl}$	38	$2-\mathrm{Cl}$	61
$2-\mathrm{Cl}$	20	66	$8-\mathrm{Cl}$	(0)	$2-\mathrm{Cl}$	53	$2-\mathrm{Cl}$	27
$3-\mathrm{Cl}$	75	2	$7-\mathrm{Cl}$	(25)	$3-\mathrm{Cl}$	43	$3-\mathrm{Cl}$	27
$4-\mathrm{Cl}$	75	1.5	$6-\mathrm{Cl}$	(2)	$4-\mathrm{Cl}$	69		n.d.
$4-\mathrm{Br}$	75	16.5	$6-\mathrm{Br}$	(23)	$4-\mathrm{Br}$	32	$4-\mathrm{Br}$	45
$2-\mathrm{NO}_{2}$	75	1.5	$8-\mathrm{NO}_{2}$	(0)	$2-\mathrm{NO}_{2}$	0	$2-\mathrm{NO}_{2}$	95
$2-\mathrm{NO}_{2}$	20	48	$8-\mathrm{NO}_{2}$	(0)	$2-\mathrm{NO}_{2}$	0	$2-\mathrm{NO}_{2}$	95
$2-\mathrm{NO}_{2}$	20	18	$8-\mathrm{NO}_{2}$	(0)	$2-\mathrm{NO}_{2}$	14		n.d.
$3-\mathrm{NO}_{2}$	75	1.5	$7-\mathrm{NO}_{2}$	(0)	$3-\mathrm{NO}_{2}$	61	$3-\mathrm{NO}_{2}$	28
$4-\mathrm{NO}_{2}$	75	1.5	$6-\mathrm{NO}_{2}$	(0)	$4-\mathrm{NO}_{2}$	53	$4-\mathrm{NO}_{2}$	45
* n.d. $=$ not determined.								

demand of the cyclising entity is the cause of the regiospecificity.

The mildness of the reaction conditions however also resulted in little or no quinoline formation even with mildly deactivating substituents such as halogen and no quinoline at all from the nitro-acetanilides. However, in both of these cases the diformylated acetanilides (10) were efficiently produced. These compounds were rapidly converted into the malondialdehydes (14) in very high yield by aqueous ethanolic alkali (Scheme 4).

Scheme 4 Reagents: i, aq. EtOH, NaOH ; ii, PPA ($150{ }^{\circ} \mathrm{C}$, 10 min) ; iii, POCl_{3}, heat; iv, aq. HCl , heat

Brief treatment of the malondialdehydes (14) with hot polyphosphoric acid (PPA) brought about efficient cyclisation to the quinolone aldehydes (15) (Table 6).

Table 6

Cyclisation of malondialdehydes (14) with PPA to 3 -formyl-2-quinolones (15)

Malondi- aldehyde (14)	Cyclisation conditions		$t /$	3-Formyl-2- quinolone (15)	
R	$T /{ }^{\circ} \mathrm{C}$	mins	R	$(\%)$	
$2-\mathrm{Cl}$	138	12	$8-\mathrm{Cl}$	91	
$3-\mathrm{Cl}$	$140-150$	10	$7-\mathrm{Cl}$	98	
$4-\mathrm{Cl}$	$154-156$	10	$6-\mathrm{Cl}$	94	
$4-\mathrm{Br}$	$140-150$	10	$6-\mathrm{Br}$	96	

The 6-chloro-3-formylquinolone ($15 ; \mathrm{R}=6-\mathrm{Cl}$) was identical to that obtained by hydrolysis of the corresponding chloroquinoline (Scheme 3). Furthermore, the reaction could be reversed by treating the quinolone briefly with hot phosphoryl chloride.

The diformylated m-nitroacetanilide ($14 ; \mathrm{R}=3-\mathrm{NO}_{2}$) did not yield a quinolone with PPA but produced a dimer (16) in 84% yield which may superficially be considered to derive from interaction of the dialdehyde with m-nitroaniline produced by hydrolysis. The malondialdehyde imines (10) were generally inert to the
action of PPA but surprisingly the m-nitro-derivative underwent deformylation to yield (17) (67\%). It would seem likely that this product was formed by hydrolysis and recombination of the derived m-nitroaniline and β-dimethylaminoacrylaldehyde. Indeed, β-dimethylaminoacrylaldehyde was isolated as a byproduct from the formylation of 4 -nitroacetanilide.

(16)

(17)

We finally turned our attention to the acetylated phenylenediamines. The ortho-system (18) yielded an oily solid on treatment with VR [DMF (6 mol equiv.) and POCl_{3} (14 mol equiv.)] which showed only two components on t.l.c. On distillation under high vacuum the mixture transformed totally into one product,' an

(20)
oil to which we assign the benzimidazole structure (19), isolated in 59% yield. It showed a typical benzimidazole chromophore in its u.v. spectrum (a sharp double absorption at 273 and 280 nm) and appropriate infrared [1640 ($\mathrm{C}=\mathrm{C}$) and $760 \mathrm{~cm}^{-1}$ (ortho-disubstituted benzene

(25) (63%)

(24)

ring)], ${ }^{1} \mathrm{H}$ n.m.r. $\left[8\left(=\mathrm{CH}_{2}\right)\right.$ at 5.87 and $5.59, J 2 \mathrm{~Hz}$, $\delta\left(\mathrm{CH}_{3}\right)$ at 2.62], and mass spectra ($M^{+} 194 / 2$ as well as
$M-\mathrm{CH}_{3}, M-\mathrm{Cl}$, and $M-\mathrm{HCl}$ peaks). It was probably formed by way of the enamine-imine (20) and the other initial product is likely to be (20) or a hydrolytic derivative therefrom.

Under the same conditions, the meta-isomer (21), in line with the greater reactivity of $+M$ meta-substituted acetanilides, efficiently cyclised twice giving regiospecifically in high yield the angular phenanthroline (22), as shown in particular by the ortho-coupled doublet for protons 9 and 10 in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum.

This result would seem to suggest that, in accord with

the known preferred reactivity of electrophiles for the 8 - over the 6 -position in quinolines, the intermediate (23) similarly selects this mode of cyclisation. Finally, the para-isomer (24), under the same conditions gave solely the bis-formamidine (25) while after a shorter reaction time, and appropriate work-up the bis-malondialdehyde (26) was isolated. However, attempted PPA-catalysed cyclisation of (26) gave only tar.
A curious by-product was noted during the formylation reactions of 2 -nitroacetanilide. 2,3,6-Trichloroquinoxaline ${ }^{12}(27)$ is formed in 4% yield, probably by way of a quinoxaline N-oxide ${ }^{13}$ as outlined in Scheme 5. The origin of the third chlorine atom is, however, obscure.

The various types of products are readily characterised by their spectral properties. Thus the quinolines (8) and (15) in particular show a sharp, low-field singlet for $\mathrm{H}-4$ in their n.m.r. spectra and generally give first-order spectra for their other aromatic protons [apart from the parent system (8; $\mathrm{R}=\mathrm{H}$) (see Table 8)]. The mass spectra of the chloroquinoline aldehydes (8) show a characteristic mode of fragmentation as depicted in Scheme 6.

The N-aryl-3-dimethylamino-2-formylacrylamides (10) show in their mass spectra, a strong molecular ion which loses $\mathrm{OH}, \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{~N}=\mathrm{CH}_{2}, \mathrm{Me}_{2} \mathrm{NH}$, and $\mathrm{R}-\mathrm{ArNH}$ all with appropriate metastable peaks. Also, loss of $\mathrm{Me}_{2} \mathrm{~N}$ is evident. The ion (m / e 126) further fragments as shown (Scheme 7) as supported by both metastable peaks

Scheme 7

and accurate mass measurement.* Similarly, the N -aryl-2-formyl-3-hydroxyacrylamides (14) reveal losses of $\mathrm{OH}, \mathrm{CHO}$, and the complete side-chain yielding anilino radical-cations.

EXPERIMENTAL

I.r. spectra were recorded on a Perkin-Elmer 297 spectrometer, ${ }^{1} \mathrm{H}$ n.m.r. spectra on a Varian EM $360(60 \mathrm{MHz})$ or Perkin-Elmer R32 (90 MHz) instrument, ${ }^{13} \mathrm{C}$ n.m.r. spectra on a Varian CFT20 (20 MHz) model, and mass spectra on AEI MS12 and AEI MS902S spectrometers. For u.v. spectra a Pye Unicam SP 800A machine was utilised. Petroleum refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$ and light petroleum to that of b.p. $40-60^{\circ} \mathrm{C}$. Column chromatography was conducted with Laporte type H alumina and Type MFC silica (Hopkin and Williams). Thick-layer chromatography was carried out on $20 \mathrm{~cm} \times$ $20 \mathrm{~cm} \times 1 \mathrm{~mm}$ plates made with Merck type G silica. Phosphoryl chloride was distilled before use, b.p. 105-107 ${ }^{\circ} \mathrm{C}$ and dimethylformamide was distilled from phosphorus pentaoxide and stored over baked molecular sieves.

[^0]The acetanilides were all known compounds prepared by standard acetylation of the purchased anilines.

Action of Vilsmeier's Reagent on Acetanilides.-($)$ In refluxing phosphoryl chloride. Dimethylformamide (9. 13 g , $9.6 \mathrm{ml}, 0.125 \mathrm{~mol}$) was cooled to $0^{\circ} \mathrm{C}$ in a flask equipped with a drying tube and phosphoryl chloride $(53.7 \mathrm{~g}, 32.2 \mathrm{ml}$, 0.35 mol) was added dropwise with stirring. To this solution was added the acetanilide (0.05 mol) and after 5 min the solution was heated under reflux for the appropriate time (3,4,5-trimethoxyacetanilide, 1.5 h ; 3,4-dimethoxyacetanilide, 2 h ; 3-methoxy- and 3 -methylthio-acetanilide, 4 h). The reaction mixture was worked up as below.
(ii) In a sealed tube. To a 100 ml flask was added dimethylformamide ($10.95 \mathrm{~g}, 11.6 \mathrm{ml}, 0.15 \mathrm{~mol}$) and the mixture was cooled in ice. Phosphoryl chloride ($53.7 \mathrm{~g}, 32.3 \mathrm{ml}$, 0.35 mol) was added dropwise with stirring followed by the acetanilide (0.05 mol). The mixture was stirred at ambient temperature until a clear solution was formed. Any further catalyst was then added and the mixture was poured into a glass tube (O.D. 26 mm and of such a length as to give approximately 30 cm sealed tube) which was cooled in liquid nitrogen, evacuated to 0.1 mmHg , and sealed. After heating for the appropriate time in a preheated Carius furnace (see Tables 1, 2, and 3) the cooled tube was further cooled in liquid nitrogen and opened. Work-up was as below.
(iii) In phosphoryl chloride solution at various temperatures in an open flask. The reaction was conducted as in method (i) using a jacketed flask with a refluxing solvent in the jacket to give the appropriate temperature. Work-up was as follows.

The reaction mixture was poured into ice-water (300 ml) and stirred for 30 min at $0-10^{\circ} \mathrm{C}$. The chloroquinolinecarbaldehyde (8) was filtered off and washed with water $(100 \mathrm{ml})$. The combined filtrate was made just alkaline ($\mathrm{pH} c a .9$) with aqueous sodium hydroxide (40%) with icecooling, and chloroform (200 ml) was added. The mixture was stirred for 30 min and then separated, and the aqueous phase was extracted further with chloroform ($2 \times 50 \mathrm{ml}$). The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a brown oil which was treated further as below. The alkaline aqueous solution was re-acidified ($\mathrm{pH} c a .2$) using concentrated hydrochloric acid and the mixture was stirred with chloroform (100 ml) for 30 min . The layers were separated and the aqueous phase was further extracted with chloroform ($2 \times 50 \mathrm{ml}$) to give a small amount of a 3hydroxyacrylamide (14) or tar.

Products from the Formylation of Acetanilides.-(a) 2-Chloro-3-formylquinolines (8). The chloroquinolinecarbaldehydes (8) were washed well with water, dried, and recrystallised to give the products recorded in Tables 1, 2, 3,4 , and 5 . The properties of these products are recorded in Tables 7 and 8.
(b) Formamidines (6). These products were isolated from the brown oil extracted from the alkaline motherliquors generally by trituration with light petroleum, in which they were soluble. Removal of the solvent and distillation of the residue in a Kugelrohr apparatus gave the pure formamidine as recorded in Tables 2, 3, 5, 9, and 10.
(c) N -Aryl-3-dimethylamino-2-formylacrylamides (10). These products also came from the brown oil derived from the alkaline mother-liquors and were obtained as solids by trituration with light petroleum. Their formation and properties are recorded in Tables 3, 4, 5, 11, and 12 and in the Discussion.

Table 7
Properties of the 2 -chloro-3-formylquinolines (8)
Elemental analysis

$\underset{R}{\text { Compound (8) }}$	Recryst. solvent *	M.p. $/{ }^{\circ} \mathrm{C}$	Required (\%)			Formula	Found (\%)			$\underset{\mathrm{cm}^{-1}}{\nu_{\text {max. }}(\mathrm{CO})} \dagger /$
			C	${ }_{\mathrm{H}}$	N		C	${ }_{\mathbf{H}}$	N	
H	A	148-149	62.7	3.2	7.3	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClNO}$	62.75	3.3	7.4	1690
6-Me	A	124-125	64.25	3.9	6.8	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}$	64.5	4.1	6.8	1685
$7-\mathrm{Me}$	A	144.5-145.5	64.25	3.9	6.8	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}$	64.4	3.8	6.7	1690
$8-\mathrm{Me}$	A	137-138	64.25	3.9	6.8	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}$	64.4	4.0	6.7	1680
$6-\mathrm{OMe}$	A	145.5-146.5	59.6	3.6	6.3	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	59.9	3.6	6.25	1670
$7-\mathrm{OMe}$	A	197-198	59.6	3.6	6.3	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	59.8	3.6	6.1	1690
8 -OMe	A	191.5-192.5	59.6	3.6	6.3	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	59.3	3.8	6.2	1680
$6-\mathrm{Br}$	B	188-189	44.4	1.9	5.2	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{BrClNO}$	44.3	1.9	5.05	1680
$6-\mathrm{Cl}$	B	190.5-191.5	53.1	2.2	6.2	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}$	53.15	2.2	6.2	1680
$7-\mathrm{Cl}$	B	158.5-159.5	53.1	2.2	6.2	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}$	53.2	2.3	6.15	1680
7-SMe	A	195-196	55.6	3.4	5.9	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNOS}$	55.3	3.5	6.2	1680
6,7-(OMe) ${ }_{\mathbf{2}}$	A	215	57.3	4.0	5.6	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{3}$	57.2	3.9	5.5	1680
5,6,7-(OMe) ${ }_{3}$	A	149-149.5	55.4	4.3	5.0	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClNO}_{4}$	55.5	4.4	4.9	1690

Table 8
${ }^{1} \mathrm{H}$ N.m.r. spectra of the 2 -chloro- 3 -formylquinolines (8) (δ)

$\underset{\mathbf{R}}{\text { Compound (8) }}$	Solvent*	H-4	H-5	H-6	H-7	H-8	CHO	Me	J / Hz
H	$\mathrm{A} \dagger$	8.83 (s)	7.6			8.3 (m)	10.35 (s)		
6-Me	B	8.68 (s)	7.82 (s)		7.70 (d)	7.86 (d)	10.44 (s)	2.55 (s)	$J_{7,8} 9$
7-Me	B	8.71 (s)	7.95 (d)	7.49 (dd)		7.79 (s)	10.47 (s)	2.60 (s)	$J_{5,6} 9$
$8-\mathrm{Me}$	B	8.75 (s)	7.92 (dd)	7.55 (t)	7.75 (dd)		10.50 (s)	2.73 (s)	$J_{6.6}=J_{6,7}=8 ;$
$6-\mathrm{OMe}$	B	8.58 (s)	7.17 (d)		7.47 (dd)	7.91 (d)	10.50 (s)	3.94 (s)	$J_{7,8} 9 ; J_{6,7} 3$
$7-\mathrm{OMe}$	A	8.72 (s)	8.03 (s)	7.27 (dd)		7.33 (s)	10.97 (s)	3.97 (s)	$J_{5,6} 9$
8 -OMe	C	8.70 (s)	7.55 (t)	7.25 (m)	7.55 (t)		10.57 (s)	4.10 (s)	
$6-\mathrm{Br}$	B	8.68 (s)	8.18 (s)		7.95 (s)	7.95 (s)	10.55 (s)		
$6-\mathrm{Cl}$	C	8.68 (s)	7.96 (s)		7.80 (dd)	8.03 (d)	10.55 (s)		$J_{7,8} 9 ; J_{5,7} 2$
7-Cl	B	8.73 (s)	7.95 (d)	7.58 (dd)		8.01 (s)	10.51 (s)		$J_{5,6} 9 ; J_{6,8} 2$
7-SMe	D	9.59 (s)	8.47 (d)	8.02 (d)		8.29 (s)	10.70 (s)	2.82 (s)	$J_{5,6} 9$
6,7-(OMe) 2	C	8.84 (s)	7.07 (s)			7.30 (s)	10.42 (s)	4.00 (s)	
5,6,7-(OMe) ${ }_{3}$	D	8.84 (s)				7.10 (s)	10.59 (s)	$4.02(\mathrm{~s})$ $4.05(\mathrm{~s})$ $4.14(\mathrm{~s})$ $4.22(\mathrm{~s})$	

* $\mathrm{A}=\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO; $\mathrm{B}=\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO; $\mathrm{C}=\mathrm{CDCl}_{3} ; \mathrm{D}=\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D} . \quad \dagger$ At 100°.

Table 9
Properties of the formamidines (6)

				$\nu_{\text {max }} / \mathrm{cm}^{-1}$ (neat)
Compound (6)	$\underset{\left(\mathrm{m} \cdot \mathrm{p} . /{ }^{\circ} \mathrm{C}\right)}{\text { B.p. }}$	Lit. b.p. or m.p.*	$\mathrm{C}=\mathrm{N}$	Others
H	140/0.05	140/18 ${ }^{\text {a }}$	1635	$2910,1590,1090,760,695$
$2-\mathrm{Me}$	124-126/0.02	128-130/12 ${ }^{\text {b }}$	1630	$2920,1590,1095,755,720$
3-Me	124-126/0.02	78-79/0.05 ${ }^{\text {a }}$	1630	$2910,1590,1570,1090,770,690$
4-Me	140/0.01	103-105/0.5 ${ }^{\text {c }}$	1630	2 910, $1600,1510,1260,1095,820$
2 -OMe	118/0.05	136/0.4 ${ }^{\text {d }}$	1635	$2940,1585,1370,1240,1095,745$
3-OMe	$150 / 0.2$	164/12 ${ }^{\text {e }}$	1640	$2930,1590,770,700$
4 -OMe	150/0.05	98/0.03 ${ }^{\text {a }}$	1635	$2910,1500,1240,1$ 100, 830
$4-\mathrm{Br}$	106/0.01	173/14 ${ }^{\text {a }}$	1630	$2900,1575,1480,1360,1095,825$
$2-\mathrm{Cl}$	130/0.05	120-122/0.02'	1630	2 900, $1580,1365,1$ 095, 750
$3-\mathrm{Cl}$	116-118/0.05	124/0.05 ${ }^{\text {a }}$	1630	$2910,1575,1360,1090$
$4-\mathrm{Cl}$	95/0.01	101-108/0.06 ${ }^{\text {a }}$	1630	2 900, $1580,1480,1360,1095,825$
$2,6-\mathrm{Cl}_{2}$	140/0.05	n.r. ${ }^{\text {f }}$	1640	$2930,1390,1260,770$
$2-\mathrm{NO}_{2}$	138-140/0.1	189/10 ${ }^{\circ}$	1635	$2910,1590,1510,1370,1$ 100, 745
$3-\mathrm{NO}_{2}$	144/0.05	195/10 ${ }^{\text {o }}$	1630	$2910,1600,1515,1345,735$
$4-\mathrm{NO}_{2}$	(82-84)	86 \%	1635	$1570,1305,1095$ (Nujol)

[^1]${ }^{a}$ D. Duerr, H. Aebi, and L. Ebner, U.S.P. 3,284,289/1967 (Chem. Abstr., 1967, 66, 28490). ${ }^{\text {b }}$ E. B. Pedersen and S.-O. Lawesson, Acta Chem. Scand., Ser. B, 1974, 28, 1045. ${ }^{c}$ M. Seefelder, Chem. Ber., 1966, 99, 2678. ${ }^{\text {d J. L. Neumeyer, J. Pharm. Sci., 1964, 53, }}$ 1539. 'H. Bredereck, P. Effenberger, and H. Botsch, Chem. Ber., 1964, 97, 3397. f J. P. Marsh and L. Goodman, Tetrahedron Lett., 1967, 683. © H. Bredereck, F. Effenberger, and A. Hofmann, Angew. Chem. Int. Ed. Engl., 1963, 2, 655.

Table 10

${ }^{1} \mathrm{H}$ N.m.r. spectra of the formamidines (6) in $\mathrm{CDCl}_{3}(\delta)$				
Compound (6)				
R	$\mathrm{CH}=\mathrm{N}$	Aromatic H's	$\mathrm{Me}_{2} \mathrm{~N}$	CH_{3}
$2-\mathrm{Me}$	7.35	6.6-7.2 (m)	2.94	2.25
3-Me	7.46	$6.65-6.9$ (m, 3 H), 7.0-7.25 (m, 1 H$)$	2.92	2.28
4-Me	7.50	$6.80-7.15$ (m)	2.98	2.30
2 -OMe	7.49	$6.7-7.0$ (m)	2.97	3.80
$3-\mathrm{OMe}$	7.48	$6.45-6.65$ (m, 3 H), $7.0-7.2(\mathrm{~m}, 1 \mathrm{H})$	2.90	3.71
$4-\mathrm{OMe}$	7.45	6.83 br	2.94	3.72
$4-\mathrm{Br}$	7.42	6.80 (d, H-2 and H-6), 7.31 (d, H-3 and H-5)	2.95	
$2-\mathrm{Cl}$	7.39		2.95	
$3-\mathrm{Cl}$	7.43	6.7-7.25 (m)	2.93	
$4-\mathrm{Cl}$	7.42	6.84 (d, H-2 and H-6), 7.16 (d, H-3 and H-5)	2.95	
$2,6-\mathrm{Cl}_{2}$	7.13	6.71 (t, H-4), 7.26 (d, H-3 and H-5)	2.95	
$2-\mathrm{NO}_{2}$	7.47	6.94 (t, H-4 and H-6), 7.32 (dt, H-5), 7.62 (dd, H-3)	2.95	
$3-\mathrm{NO}_{2}$	7.59	$7.2-7.5$ (m, H-5 and H-6), $7.7-7.9$ (m, H-2 and H-4)	3.05	
$4-\mathrm{NO}_{2}$	7.60	6.95 (d, H-2 and H 6), 8.07 (d, H-3 and H-5)	3.05	

(d) 2,3,6-Trichloroquinoxaline. From 2-nitroacetanilide, on pouring the reaction mixture into ice-water, a pale brown solid precipitated ($0.3 \mathrm{~g}, 4 \%$) which recrystallised from toluene as fawn needles, m.p. $144.5-146{ }^{\circ} \mathrm{C}$ (lit., ${ }^{12}$ $143-144{ }^{\circ} \mathrm{C}$) (Found: C, 41.2; H, 1.6; N, 11.9. Calc. for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Cl}_{3} \mathrm{~N}_{2}$: C, 41.15; H, 1.3; $\mathrm{N}, 12.0 \%$) ; $\nu_{\text {max. }}$ (Nujol) I 590, $1150,1000,880$, and $825 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.73$ (dd, $\mathrm{H}-7, J_{7.8} 9, J_{5,7} 2 \mathrm{~Hz}$) 7.95 (d, H-8), and 8.00 (d, H-5); $m / e 236(35 \%), 234(100)$, and $232(100)\left(M^{+}\right) ; 199(50)$ and 197 (70) $(M-\mathrm{Cl})$; 164 (3) and 162 (9) ($M-\mathrm{Cl}_{2}$); and 138 (13) and 136 (39) ($M-\mathrm{Cl}_{2} \mathrm{CN}$).
(e) 3-Dimethylaminoacrylaldehyde. From the final aqueous solution derived from 4-nitroacetanilide after removal of the formamidine was isolated a red oil (1.63 g) which was distilled ($146-148^{\circ} \mathrm{C}$ at 0.1 mmHg) to give a mixture of a solid and an oil. Addition of cold toluene (10 ml) precipitated a yellow solid ($0.31 \mathrm{~g}, 5 \%$), p-nitroaniline, m.p. $145-$ $146{ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} 147^{\circ} \mathrm{C}$). From the toluene was isolated as an oil (0.05 g), β-dimethylaminoacrylaldehyde; $v_{\text {max. }}$ (neat) $1600(\mathrm{CO}), 1400,1170$, and $1110 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 2.97 \mathrm{br}$ (s, $\mathrm{Me}_{2} \mathrm{~N}$), 5.12 (dd, H-2), 7.04 (d, H-3), and 9.07 (d, CHO)
($J_{2.3} 13, J_{1,2} 9 \mathrm{~Hz}$); $m / \epsilon 99\left(93 \%, M^{+}, \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\right)$, 98 (67), 82 ($71, \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}, M-\mathrm{OH}$), 70 ($17, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}, M-\mathrm{CHO}$), 55 (50, $\left.\mathrm{C}_{4} \mathrm{H}_{7}, M-\mathrm{CH}_{2} \mathrm{NO}\right)$, and $42\left[100, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}, M-(\mathrm{CH}=\right.$ $\mathrm{CH}-\mathrm{CHOH})]$

Hydrolysis of the N -Aryl-3-dimethylamino-2-formylacrylamides (10).-The title product ($0.2-5 \mathrm{~g}$) in ethanol (50 ml) was treated with 20% aqueous sodium hydroxide (40 ml) and the mixture was boiled for 1 min . On cooling the mixture was poured onto ice (ca. 200 ml) and acidified. After 2 h the precipitate was filtered off, washed with water, and dried. Recrystallisation gave the N -aryl-2-formyl-3hydroxyacrylamides (14) as recorded in Tables 13 and 14.

Hydrolysis of the N -Aryl-3-dimethylamino-2-formylacryl amides (10).-The title product ($0.2-5 \mathrm{~g}$) in ethanol (50 ml) was treated with 20% aqueous sodium hydroxide (40 ml) and the mixture was boiled for 1 min . On cooling the mixture was poured onto ice ($c a .200 \mathrm{ml}$) and acidified. After 2 h the precipitate was filtered off, washed with water, and dried. Recrystallisation gave the N-aryl-2-formyl-3hydroxyacrylamides (14) as recorded in Tables 13 and 14.

Action of Polyphosphoric Acid on the Acrylamides (14).-

Table 11
Properties of the N-aryl-3-dimethylamino-3-formylacrylamides (10)

* These compounds were not purified but hydrolysed directly to 3-hydroxy-2-formylacrylamides (14). $\dagger \mathbf{A}=$ Toluene; $\mathbf{B}=$ ethanol. If Also $\mathrm{NO}_{\mathbf{2}}$ absorption.

Table 12
${ }^{1} \mathrm{H}$ N.m.r. spectra of N -aryl-3-dimethylaminoacrylamides at normal probe temperature in CDCl_{3}

Compound (10)	$\delta\left(\mathrm{CDCl}_{3}\right)$		
R	Aromatic H	$\mathrm{Me}_{2} \mathrm{~N}$	Others
4 -Me	7.10 (d, H-3, H-5), 7.53 (d, H-2, H-6)	3.25	2.30 (s, Me)
$4-\mathrm{Br}$	$7.30-7.60$ (q)	3.31	
$2-\mathrm{Cl}$	$6.8-7.5$ (m, H-3, H-4, H-5), 8.45 (dd, H-6)	3.27	
$3-\mathrm{Cl}$	$6.9-7.5$ (m, H-4, H-5, H-6), 7.84 (t, H-2)	3.29	
4 Cl	7.25 (d, H-3, H-5), 7.60 (d, H-2, H-6)	3.30	see text
${ }_{4}^{3-\mathrm{NO}_{2}}$	7.41 (t , H-5), $7.75-8.0$ (m, H-4, H-6), 8.67 (t, H-2)	3.40	
$4-\mathrm{NO}_{2}$ *	7.85 (d, H-2, H-6), 8.20 (d, H-3, H-5)	3.40	11.40 (s, NH), 9.29 (s, CHO)

* $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO instead of CDCl_{3}.

Table 13
Properties of the N-aryl-2-formyl-3-hydroxyacrylamides (14)

Compound $\stackrel{(14)}{R}$	Recryst. solvent *	M.p. ${ }^{\circ} \mathrm{C}$	Found (\%)			Formula	$\underbrace{\text { Required (\%) }}$			$\nu_{\text {max }} / \mathrm{cm}^{-1}$					
						$\mathrm{OH} \quad \mathrm{CO}$ and $\mathrm{C}=\mathrm{C}$				$\underset{\text { II }}{\text { Amide }}$					
			C	H	N								C	H	N
2 Me	A	92-93	64.30	5.4	7.0	$\mathrm{C}_{41} \mathrm{H}_{11} \mathrm{NO}_{3}$	64.4	5.4	6.8		3150	1660	1615	1590	1565
4-Me	A	$81-82$	64.7	5.45	7.3	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$	64.4	5.4	6.8	3175	1660	1630	1590	1540	
2,6-Me ${ }_{2}$	B	99-101	65.75	6.1	6.2	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$	65.7	6.0	6.4	3200	1655	1630		1540	
2 -OMe	B	100-101	60.0	5.1	6.2	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}$	59.7	5.0	6.3	3200	1670	1620	1590		
4 -OMe	C	87-88	60.0	4.8	6.2	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}$	59.7	5.0	6.3	3150	1655	1620	1590	1545	
$4-\mathrm{Br}$	B	154-155	44.4	3.1	5.2	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}_{3}$	44.5	3.0	5.2	3175 3125	1665	1630	-1600	1550	
$2-\mathrm{Cl}$	A	104-105	53.3	3.6	6.5	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	53.2	3.6	6.2	3150	1670	1600		1555	
$3-\mathrm{Cl}$	A	104-105	53.2	3.6	6.4	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	53.2	3.6	6.2	3090	1660	1610	1590	1550	
$4-\mathrm{Cl}$	B	134-135	53.45	3.6	6.3	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	53.2	3.6	6.2	3100	1660	1620		1560	
${ }_{2}-\mathrm{NO}_{2}$	B	120-121	50.9	3.55	11.9	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}$	50.85	3.4	11.9	${ }_{3} 3130$	1670	1605	1585		
$3-\mathrm{NO}_{2}$	D	$\begin{gathered} 180 \\ \text { (decomp.) } \end{gathered}$	51.1	3.7	11.6	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}$	58.85	3.4	11.9	3100	1665	1600		1565	

Table 14
${ }^{1} \mathrm{H}$ N.m.r. spectra of N-aryl-2-formyl-3-hydroxyacrylamides

Compound		Chemical shifts (δ)					
R	Solvent	OH	NH	CHO	H-3	Aromatic	Me
2 -Me	CDCl_{3}	15.8 br	10.8 br	9.26	8.30	$7.0-7.4(\mathrm{~m}, 3 \mathrm{H}), 7.85-8.0$ (m, H-6)	2.36
4-Me	CDCl_{3}	16.0 br	10.8 br	9.21	8.28	7.15 (d, H-3, H-5), 7.44 (d, H-2, H-6)	2.31
2,6-Me ${ }_{2}$	CDCl_{3}	$15-13 \mathrm{br}$	10.35 br	9.30	8.41	7.11 (s)	2.22
2 -OMe	CDCl_{3}	16.0 br	11.2 br	9.20	8.21	6.8-7.2 (m, 3 H), 8.16br (H-6)	3.0
$4-\mathrm{OMe}$	CDCl_{3}	$16-25 \mathrm{br}$	10.75 br	9.20	8.29	6.87 (d, H-3, H-5), 7.46 (d, H-2, H-6)	3.79
$4-\mathrm{Br}$	[${ }^{2} \mathrm{H}_{6}$ D ${ }^{\text {D }}$ MSO	13.5 br	10.7 br	9.02	9.02	7.56 (s)	
$2-\mathrm{Cl}$	CDCl_{3}	15.8-14.8	11.2 br	9.30	8.21	$7.0-7.5$ (m, 3 H$), 8.30$ (dd, H-6)	
$3-\mathrm{Cl}$	CDCl_{3}	15.5 br	10.8 br	9.23	8.20	$7.0-7.5$ (m, 3 H$), 7.70$ (t, H-2)	
$4-\mathrm{Cl}$	$\left[{ }^{2} \mathrm{H}_{6}{ }^{3}\right.$ DMSO	13.65 br	10.7 br	9.00	9.00	7.37 (d, H-3, H-5), 7.67 (d, H-2, H-6)	
$2-\mathrm{NO}_{2}$	CDCl_{3}	15.5-14.5	12.3 br	9.33	8.20	7.30 (dt, H-4), 7.68 (dt, H-5), 8.17 (dd, H-6), 8.47 (dd, $\mathrm{H}-3$)	
$3-\mathrm{NO}_{2}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO *	10.9br	10.9br	8.96	8.96	$\begin{aligned} & 7.52(\mathrm{t}, \mathrm{H}-5), 7.7-8.0(\mathrm{~m}, \mathrm{H}-4, \mathrm{H}-6) \text {, } \\ & 8.55(\mathrm{t}, \mathrm{H}-2) \end{aligned}$	

To the acrylamide (1.0 g) in a boiling tube was added polyphosphoric acid (15 g) and the mixture was heated with stirring as shown in Table 6. After cooling to $70-80^{\circ} \mathrm{C}$, ice (ca. 20 g) was added and the resulting solution was diluted to 100 ml . After 10 min the precipitate was filtered off, washed with water, and dried by suction to give the 3 -formylquinolones shown in Table 6. Their properties are as follows: (a) 6-chloro-3-formyl-2-quinolone (15; $\mathrm{R}=$ $6-\mathrm{Cl}$), yellow needles, m.p. $357-358{ }^{\circ} \mathrm{C}$ (decomp.) (from acetic acid) (Found: C, 57.9; H, 3.1; N, 6.8. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 57,85 ; \mathrm{H}, 2.9 ; \mathrm{N}, 6.75 \%$), $\nu_{\max }$ (Nujol) 3150 (NH), 1680 (CO), 1550 (amide II), 890 , and $815 \mathrm{~cm}^{-1}$, ν_{m} (hexachlorobutadiene) $3200-2500 \mathrm{br}(\mathrm{NH}), \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right.$ at $100{ }^{\circ} \mathrm{C}$) $11.90 \mathrm{br}(\mathrm{NH}), 10.20(\mathrm{~s}, \mathrm{CHO}), 8.33$ ($\mathrm{s}, \mathrm{H}-4$), 7.89 (d, H-5), 7.55 (dd, H-7), and 7.31 (d, H-8) ($J_{7.8} 9, J_{5.7}$ 2 Hz); (b) 7-chloro-3-formyl-2-quinolone ($15 ; \mathrm{R}=7-\mathrm{Cl}$). yellow needles, m.p. $338-340{ }^{\circ} \mathrm{C}$ (decomp.) (from acetic acid) (Found: C, 57.8; H, 3.1; N, €.6. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClNO}_{2}$ requires C, $67.85 ; \mathrm{H}, 2.9 ; \mathrm{N}, 6.75 \%$), $\nu_{\max .}$ (Nujol) 1680 (CO), 1610,1550 (amide II), and $1210 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO at $90^{\circ} \mathrm{C}$) 10.12 (s, CHO), 8.33 (s, H-4), 7.81 (d, H-5), 7.31 (d, H-8), and 7.14 (dd, H-7) ($J_{5.6} 9, J_{6.8} 2 \mathrm{~Hz}$); 8-chloro-3-formyl-2-quinolone ($15 ; \mathrm{R}=8-\mathrm{Cl}$), yellow crystals, m.p. $259{ }^{\circ} \mathrm{C}$ (decomp.) (from aqueous acetonitrile) (Found: C , 57.6; $\mathrm{H}, 2.9 ; \mathrm{N}, 6.95 . \quad \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 57.85$; H, 2.91; N, 6.75\%), $v_{\text {max. }}$ (Nujol) 3160 (NH), 1680 (CO) 1585 , and $1200 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO at $\left.90{ }^{\circ} \mathrm{C}\right) 10.18$ (s, CHO), 8.38 (s, H-4), 7.78 (dd) and 7.66 (dd) (H-5 and H-7), and $7.14(\mathrm{t}, \mathrm{H}-6)\left(J_{5.6} \simeq J_{6,7} \simeq 8 \mathrm{~Hz}\right)$; 6-bromo-3-formyl-2-
quinolone ($15 ; \mathrm{R}=6-\mathrm{Br}$), fawn crystals, m.p. $342-344{ }^{\circ} \mathrm{C}$ (decomp.) (from acetic acid) (Found: C, 47.4; H, 2.5; N, 5.7. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 47.65 ; \mathrm{H}, 2.4 ; \mathrm{N}, 5.6 \%$), $\nu_{\text {max }}$ (Nujol) 1680 (CO), 1540 (amide II), and $1100 \mathrm{~cm}^{-1}, \delta$ $\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right]$ DMSO at $\left.100^{\circ} \mathrm{C}\right) 10.18(\mathrm{~s}, \mathrm{CHO}), 8.30(\mathrm{~s}, \mathrm{H}-4), 8.01(\mathrm{~d}$, $\mathrm{H}-5$), 7.65 (dd, H-7), and 7.23 (d, H-8) ($J_{7.8} 9, J_{5}, 2 \mathrm{~Hz}$). 2-Formyl-3-(3-nitroanilino)-N-(3-nitrophenyl)acrylamide.
(16). 2-Formyl-3-hydroxy-N-(3-nitrophenyl)acrylamide on heating at $140-150^{\circ} \mathrm{C}$ for 10 min with polyphosphoric acid gave the title product (84%) as fawn crystals from aqueous dimethylformamide, m.p. $281-283{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.9; H, 3.2; N, 15.75. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, $53.0 ; \mathrm{H}$, $3.4 ; \mathrm{N}, 15.7 \%$), $\nu_{\max .}$ (Nujol) 3100 br (NH), 1660 (CO), 1520 (amide II), 1340 , and $730 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO at 100 $\left.{ }^{\circ} \mathrm{C}\right) 11.90 \mathrm{br}(\mathrm{OH}), 11.15 \mathrm{br}(\mathrm{NH}), 9.32(\mathrm{~s}, \mathrm{H}-3), 8.66(\mathrm{t}, 1 \mathrm{H})$, $8.35(\mathrm{t}, 1 \mathrm{H})$, and $7.4-8.1(\mathrm{~m}, 7 \mathrm{H})$.

3-Dimethylamino-N-(3-nitrophenyl)prop-2-en-1-imine (17). When 3 -dimethylamino-2-formyl- N-(3-nitrophenyl)acrylamide ($10 ; \mathrm{R}=3-\mathrm{NO}_{2}$) was treated with polyphosphoric acid at $140{ }^{\circ} \mathrm{C}$ for 10 min , the title product was isolated (67%) and recrystallised from toluene-petroleum as red needles, m.p. $114-115{ }^{\circ} \mathrm{C}$ (Found. C, 60.3; H, 5.95; N, $19.2 \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 6.0 ; \mathrm{N}, 19.2 \%$), $\nu_{\text {max. }}$ (Nujol) 1625 , 1505,1570 , and $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right), \delta\left(\mathrm{CDCl}_{3}\right) 7.98(\mathrm{~d}, \mathrm{H}-2)$, $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{H}-4), 5.41(\mathrm{q}, \mathrm{H}-3)$, and $2.98\left(\mathrm{Me}_{2} \mathrm{~N}\right), m / e 219\left(M^{+}, 100 \%\right), 204(M-\mathrm{Me}, 15), 172$ $\left(M-\mathrm{HNO}_{2}, 15\right), 158$ (30), 157 (35), and 130 (30).

Action of Vilsmeier's Reagent on Acetylated Phenylenedia-mines.-(a) On NN^{\prime}-diacetyl-o-phenylenediamine. The
acetylphenylenediamine ($2.40 \mathrm{~g}, 0.0125 \mathrm{~mol}$), dimethylformamide ($5.48 \mathrm{~g}, 5.80 \mathrm{ml}, 0.0375 \mathrm{~mol}$), and phosphoryl chloride ($26.9 \mathrm{~g}, 16.1 \mathrm{ml}, 0.0875 \mathrm{~mol}$) were allowed to react for 16 h at $75{ }^{\circ} \mathrm{C}$ according to the general method (iii) above. The mixture was poured into ice-water to give a clear solution, and basified. The oil which separated was extracted with ether and the extract was dried, evaporated, and distilled twice (Kugelrohr $124{ }^{\circ} \mathrm{C}$ at 0.2 mmHg and $90^{\circ} \mathrm{C}$ at 0.01 mmHg$)$ to give 1 -(1-chlorovinyl) -2 -methylbenzimidazole (19) ($1.41 \mathrm{~g}, 59 \%$) as a pale yellow oil (Found: $\mathrm{C}, 62.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 14.8 . \quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 62.35$; H, 4.7; N, 14.5\%), $v_{\max }$ (neat) $3050(=\mathrm{CH}), 1640(\mathrm{C}=\mathrm{N})$, $1540,1450,1340,1280,1170$, and $760 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}$ (MeOH) 273 and $280 \mathrm{~nm}, \delta\left(\mathrm{CDCl}_{3}\right) 7.70(\mathrm{~m}, \mathrm{H}-7), 7.2-7.5(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 5.87 (d, 1 H , olefinic, $J 2 \mathrm{~Hz}$), $5.59(\mathrm{~d}, 1 \mathrm{H}$, olefinic), and 2.62 (s, me), $m / e 194\left(M^{+}, 22 \%\right), 192\left(M^{+}, 65\right)$, 179/177 $\left(M-\mathrm{CH}_{3}, 1\right.$ and 3$), 157(M-\mathrm{Cl}, 100)$, and 156 ($M-\mathrm{HCl}, 27$).
(b) On $N N^{\prime}$-diacetyl-m-phenylenediamine. Using double the quantities with the method as above, after 4 h heating under reflux the reaction mixture was poured into icewater and neutralised with aqueous sodium hydroxide. The precipitate was filtered off, washed with water, and recrystallised from dioxan to give 2,8 -dichloro-3,9-diformyl1,5 -phenanthroline (22) ($7.0 \mathrm{~g}, 92 \%$) as pale yellow platelets, m.p. $274{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.6; H, 2.2; N, 9.2. $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 55.1; H, 2.0; N, 9.2%), $\nu_{\text {max }}$ (Nujol) $1680 \mathrm{~cm}^{-1}$ (CHO), $\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) 8.12 (d) and 8.59 (d) ($9-\mathrm{H}$ and $10-\mathrm{H}, J 9 \mathrm{~Hz}$), $9.11(\mathrm{~s}, 4-\mathrm{H}$ and $8-\mathrm{H})$, and 10.46 ($\mathrm{s}, 2 \mathrm{CHO}$), $m / e 304 / 306 / 308\left(M^{+}\right)$.
(c) NN^{\prime}-Diacetyl-p-phenylenedranine. Using the same quantities and method as in (a) and the same reaction time and temperature, the reaction mixture was again poured into ice-water to give a clear solution. On making alkaline, an oil separated which solidified on standing and was filtered off. This solid was extracted (Soxhlet) with light petroleum for 24 h , when removal of the solvent gave 1,4 -bis- NN (dimethylaminomethyleneamino) benzene (25) ($1.70 \mathrm{~g}, 63 \%$) as yellow needles from cyclohexane, m.p. 119-120 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ $120.5-121.5^{\circ} \mathrm{C}$), $\nu_{\text {max. }}$ (Nujol) 1620 (C=N), 1360,1100, and $840 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 7.51(\mathrm{~s}, \mathrm{CH}=\mathrm{N}), 6.89$ (s , aromatic), and $2.98\left(\mathrm{~s}, \mathrm{Me}_{2} \mathrm{~N}\right)$

We thank Croda Synthetic Chemicals Limited for a grant
(to B. N.) and gifts of chemicals, and Clayton Aniline Company and the S.R.C. for a grant (to B. T.).
[0/1208 Received, 31st July, 1980]

REFERENCES

${ }^{1}$ Part 4, O. Meth-Cohn and B. Tarnowski, Tetrahedron Lett., 1980, 3721. Preliminary publications: O. Meth-Cohn and B. Narine, Tetrahedron Lett., 1978, 2045; O. Meth-Cohn, B. Narine, and B. Tarnowski, ibid., 1979, 3111.
${ }^{2}$ M. C. Friedel, Bull. Soc. Chim. Fr., 1896, 11, 1028.
${ }^{3}$ O. Fischer, A. Muller, and A. Vilsmeier, J. Prakt. Chem., 1925, 109, 69.

4 A. Vilsmeier and A. Haack, Ber., 1927, 60B, 119.
${ }^{5}$ E.g. see K. E. Schulte and D. Bergenthal, Arch. Pharm. (Weinheim, Ger.), 1979, 312, 265.
${ }^{6}$ For an excellent review see C. Jutz, Adv. Org. Chem., Methods and Results, 1976, 9, 225.
${ }^{7}$ For some related quinoline syntheses see (a) H. Ulrich, 'The Chemistry of Imidoyl Halides,' Plenum Press, New York, 1968, p. 87 (dimerisation of chloroacetylanilides with phosphorus pentachloride); (b) H. Ahlbrecht and C. Vonderheid, Chem. Ber., $1975,108,2300$ (conversion of N-methylacylanilides into 2,4dichloroquinolinium salts with phosgene); (c) E. B. Pedersen, Tetrahedron Lett., 1977, 33, 217 (conversion of ortho-substituted acetanilides into 2,4 -bis(dimethylamino) quinolines with hexamethylphosphoric triamide); (d) J. P. Chupp and S. Metz, J. Heterocycl. Chem., 1979, 16, 65 (conversion of N-substituted acetanilides into N-substituted-2-quinolones by Vilsmeier's reagent; this paper appeared after our preliminary publications).
${ }^{8}$ G. Ah-Kow, C. Paulmier, and P. Pastour, Bull. Soc. Chim. Fr., 1976, 151 ; C. Paulmier and F. Outurquin, J. Chem. Res. (S), 1977, 318; $(M), 1977,3660$; B. A. J. Clark, J. Parrick, and P. J. West, J. Chem. Soc. (C), 1970, 498; M. A. Kira, M. N. AboulEnein, and M. I. Karkor, J. Heterocycl. Chem., 1970, 7, 25.
${ }^{9}$ (a) Ref. 7a, p. 57; (b) H. Eilingsfeld, M. Seefelder, and H. Weidinger, Angew. Chem., 1960, 836; (c) H. H. Bosshard and H. Zollinger, Helv. Chim. Acta., 1959, 42, 1659.

10 J. von Braun and H. Silbermann, Ber., 1930, 63, 498.
11 J. March, 'Advanced Organic Chemistry: Reactions, Mechanisms, and Structures,' McGraw-Hill, 2nd edn., 1977, p. 470.
${ }_{12}$ R. D. Haworth and S. Robinson, J. Chem. Soc., 1948, 777.
13 For related cyclisations of o-nitroaniline derivatives to quinoxaline N-oxides see A. R. Katritzky and J. M. Lagowski in 'Chemistry of Heterocyclic N-Oxides,' Academic Press, London, 1971, pp. 93 and 123. For the conversion of quinoxaline N oxides into 2 - and 6 -chloroquinoxalines on treatment with phosphoryl chloride see G. W. H. Cheeseman and R. F. Cookson, in 'Condensed Pyrazines,' 'The Chemistry of Heterocyclic Compounds,' eds. A. Weissberger and E. C. Taylor, John Wiley and Sons, 1979, 35, p. 43.
${ }_{14}$ F. J. Smith and E. Jones, 'A Scheme of Qualitative Organic Analysis,' Blackie and Sons Limited, London, 1949.
${ }^{15}$ H. Bredereck and K. Bredereck, Chem. Ber., 1961, 94, 2278.

[^0]: * The accurate mass measurements on $\mathrm{Me}_{2} \mathrm{NCH}=\mathrm{CHCHO}$ confirmed the above assignments.

[^1]: * n.r. $=$ Not reported.

